Down by the Bay, where the Microplastics Flow:

Sources and Sinks of Microplastics in Lake Ontario

Paul Helm

Ontario Ministry of the Environment and Climate Change

Microplastics in the Great Lakes

- Pellets washing up on L. Huron beaches

 Since 2007, most years since
 - Raw material "nurdles"

Lake Huron Centre for Coastal Conservation, 2010

Water Air Soil Pollut (2011) 220:365-372 DOI 10.1007/s11270-011-0760-6 Shores of Lake Huron awash in plastic pellets PATRICK WHITE The Globe and Mail

Published Wednesday, Oct. 13 2010, 10:22 PM EDT

Distribution and Degradation of Fresh Water Plastic Particles Along the Beaches of Lake Huron, Canada

Maciej Zbyszewski · Patricia L. Corcoran

Microplastics in Great Lakes Waters

Surface water sampling in Lakes Superior, Huron, Erie (2012)

Eriksen, Mason et al. 2013 Mar. Pollut. Bull.

Questions for Managing Microplastics

- 1) What and how much microplastics are in our waters?
- 2) Where are the microplastics coming from?
 - Specific sources; pathways
- 3) What harm do the microplastics cause?
- 4) What can be done to reduce the presence of microplastics in the environment?
 - <u>Microbeads</u> a first step; variety of sources will mean a broad range of solutions to address <u>microplastics</u>
 - Can we track reductions? Can we fingerprint sources?

Sampling for Microplastics

Sample Processing

Collection:

Water – Plankton Nets (363µm), Sieves, Filtration

Sediment – Bulk Collections

Processing (NOAA):

Sieve out larger pieces Digest using hydrogen peroxide Wash & sieve (<4.75 mm; <1 mm) Dry in oven

Sample Processing

Collection:

Water – Plankton Nets (363µm), Sieves, Filtration

Sediment – Bulk Collections

Processing (NOAA):

Sieve out larger pieces Digest using hydrogen peroxide Wash & sieve (<4.75 mm; <1 mm) Dry in oven

Sample Processing

Collection:

Water – Plankton Nets (363µm), Sieves, Filtration

Sediment – Bulk Collections

Processing (NOAA):

Sieve out larger pieces Digest using hydrogen peroxide Wash & sieve (<4.75 mm; <1 mm) Dry in oven

Microscope and IR Analyses

Collection:

Water – Plankton Nets (363µm), Sieves, Filtration

Sediment – Bulk Collections

Processing:

Sieve out larger pieces Digest using hydrogen peroxide Wash & sieve (<4.75 mm; <1 mm) Dry in oven

Analysis:

Count, categorize under microscope Infrared analysis for polymer type

 Fragment, Microbead, Foam, Fiber, Film, Pre-production Pellet

Microplastics in Nearshore Waters

2014 Great Lakes Nearshore Results

Microplastic Categories

Challenges Counting / Apportioning by Category

Microbeads:

- spherical, multi-colour

Broad Categories: - beads / pellets represent different sources

- wide range sources of fragments (catch-all category)

Fragment "Morphology" / "Taxonomy"

- Information in structure of fragments
 - Cuttings, shavings, trimmings
 (Curled, twisted, corrugated)
 - Melted plastic, droplets
 (Cooled, oozed with pressure)
 - Both indicative of industrial / commercial sources?

(Moldings, construction [plastic lumber, foam boards/stucco])

 Indicates potential stakeholders to engage with on best practices

2015 Microplastics Sampling

2015 Microplastic Abundance

2015 Microplastic Abundance

2015 Microplastic Abundance

Trawl tracks

Distributions - Source Specific Categories

Microplastics in Nearshore Sediments

Plastics Industry Sector - Locations

Microplastics in L. Ontario Nearshore Fish

Microplastics in WWTP Effluent

Microplastics in WWTP Effluent

Microplastic Profiles – WWTPs

Fragments

- Commercial Fragments
- Spherical Microbeads
- Irregular Microbeads
- Foam
- Fibers
- Film
- Pre-Production Pellets

- Fibres, Microbeads and Fragments are the most important categories in WWTP effluent
- Commercial fragments present in greater proportions
 in effluent from WWTP in western Toronto

Summary of Observations; Response

- There are a wide variety of sources contributing microplastics to Lake Ontario and the Great Lakes
- Fibers, fragments (commercial and post-consumer), and microbeads are the dominant types present in samples
- The greatest abundances are found close near wastewater discharges, urban rivers (run-off) and the regions where commercial activities and population are focussed

MOECC Response on Microplastics:

- Input on management of microbeads
- Spill response & related abatement
- Monitoring & supporting research
- > Waste-Free Ontario Act; circular economy, etc
- Considering further approaches to address microplastics

Microplastics Initiatives

Monitoring

- WWTPs 2015-2019; evaluate ban on microbeads (MOECC)
- Lake Ontario nearshore, urban streams (MOECC)
- Great Lakes sediments, track through time (UWO/ECCC/MOECC)

<u>Effects</u>

- Life cycle exposures of fathead minnows (UT, MOECC, DFO)
 - Variety of microplastic types, including fibres

Exposure

• "Am I eating plastic?" "Are they poisoning our fish?" (UT, MOECC)

<u>Methods</u>

- Tracing sources (fingerprinting) (MOECC)
- Smaller particles, trace quantities (for exposure) (UT, MOECC)

Acknowledgments

Anika Ballent Patricia Corcoran

Breck

Keenan Munno Chelsea Rochman Don Jackson Xianming Zhang Ian Brindle Co-op Students

Maryanne Stones Garett Zimmer Giuseppe Gigliotti Courtney Miller Keisha Harris Moyosore Lanisa

GL Field Unit Alina David Poirier Karl L Eric Reiner Satye

Alina Sims Karl Jobst Satyendra Bhavsar