

TORONTO & REGION

PLAN

Assessing Sediment Quality Using a Tetrad Approach in the Toronto and Region Area of Concern

Kathleen Stevack – University of Guelph Ontario Ministry of Environment and Climate Change

Study Area

- 5 Study sites within Toronto AOC
- One control site Prince Edward County

Toronto

Station 2027 - Keating

Background

Beneficial Use Impairment	Status in 1989	
	Impaired	Requires Further Assessment
Restrictions on fish consumption	X	
Degradation of benthos	X	
Restrictions on dredging activities	X	
Eutrophication or undesirable algae	X	
Beach closings	X	
Degradation of aesthetics	X	
Degradation of fish and wildlife populations	X	
Loss of fish and wildlife habitat	X	
Fish tumours or other deformities		X
Bird or animal deformities or reproductive problems		X
Degradation of phytoplankton and zooplankton communities		X

Original status of Beneficial Use Impairments in the Toronto and Region AOC (1989)

Background

Sediment Contamination

•Major impediment to AOC restoration (COA, 2008)

Contaminated sediment:

- Benthic invertebrates
- Higher level consumers
- Impairs water quality
- •Historical and emergent chemical contamination
- Source and Sink

Sources of Contaminants

•Urban runoff

Combined sewer overflows

•Elevated concentrations:

- Nutrients
- Metals
- Organic contaminants

Delisting Process Weight of Evidence for Evaluation Remove • Comparison to • Metric of in **Beneficial** Use temporal and situ ecological Impairment spatial trends condition Evaluate current Consult the conditions to Public **Benthic Bulk Sediment** determine Community state of BUI Chemistry Structure Propose BUI Implement Toxicity removal where management **Bioassays** assessment actions to **Bioaccumulation** shows use address BUI Assessment restored • Links exposure • Potential for Assess and effect trophic impact of transfer management actions on the BUI

Methods – Field Collection and Processing

- •Sediments collected using shipek grab (Toronto sites) or ponar (reference site)
- •3 replicate benthos samples per site
- Benthos screened (500 µm), preserved in 80% ethanol
- Sediment submitted to Laboratory Services Branch of MOECC for analysis of contaminants

Sediment Chemistry – Polychlorinated Biphenyls

Sediment Chemistry - Metals

TORONTO & REGION

Sediment Chemistry – Perfluorinated Compounds

Methods - Acute Testing

Midge Chironomus dilutus:
 10 day survival and growth (ash free dry weight) (EC)

Amphipod Hyalella azteca:
 14 day survival and growth (dry weight) (EC)

Acute Results - Survival

Acute Results - Growth

Methods – Chronic Testing

- Midge Chironomus dilutus:
 Life-cycle test (EPA) 56 days
- Amphipod Hyalella azteca:
 42 day life-cycle test (EPA)
- •2 water renewals per day

Chronic Results - Hyalella

Chronic Results - Hyalella

Chronic Results - Hyalella

Chronic Results - Chironomus

Chronic Results - Chironomus

Chronic Results - Chironomus

Bioaccumulation

- •Certain chemicals persist in aquatic systems, may accumulate in tissues of aquatic organisms
- Exposure to bioaccumulative compounds may be through water, sediment, or diet
- •Extent of bioaccumulation dependent on:
 - trophic structure
 - sediment characteristics
 - chemical characteristics of pollutant
 - lipid content of organism

•Within the sediment quality tetrad, bioaccumulation can indicate potential risks to higher level consumers

Methods

- 28-day laboratory bioaccumulation test:
 - mayfly nymph (*Hexagenia* spp.)
 - fathead minnow (*Pimephales promelas*)
 - oligochaete (*Lumbriculus variegatus*)
- •Tissue submitted for chemical residue analysis
- In situ bioaccumulation assessed with forage and sport fish collections for tissue analysis (forthcoming data)

Results – Polycyclic Aromatic Hydrocarbons

Results – Perfluorinated Compounds

Results – Polychlorinated Biphenyls

Conclusions

 Degradation of Benthos BUI – removed in 2013 based on reductions in metals and organic contaminants below guidelines

- •The current study identified toxicity in sediments collected near the outflow of the Humber Bay Sewage Treatment Plant, suggesting continued issues with combined sewer overflows and aging infrastructure
- •Emerging contaminants such as elevated PFOS concentrations in Humber Bay STP samples pose an interesting question for the delisting process, and may need to be addressed under other programs
- •Further lines of evidence (benthic community data) will be incorporated to determine current remedial state
- •As this BUI has already been designated "unimpaired," continued monitoring is necessary for the maintenance of sediment quality.

Acknowledgments

•NSERC CREATE Great Lakes

University of Guelph

 Ontario Ministry of Environment – Laboratory Services Branch & Environmental Monitoring and Reporting Branch

